荷乐网下载手机App | 客服热线:0031(0)104133904
请高人指点, kruskal-wallis test 一般什么统计软件比较方便作,如何interpret 结果,和chi-squres 的区别?  如果有实例最好拉~~

精彩评论4

liedje  中级海盗  2006-1-22 15:58:23 | 显示全部楼层 来自: 荷兰

回复: 请教统计问题...

I think SAS could be helpful
use this link. Here're the comparisons between different tests under different softwares

http://www.ats.ucla.edu/stat/mult_pkg/whatstat/default.htm


The Kruskal Wallis test can be applied in the one factor ANOVA case. It is a non-parametric test for the situation where the ANOVA normality assumptions may not apply.
Let ni (i = 1, 2, ..., k) represent the sample sizes for each of the k groups (i.e., samples) in the data. Next, rank the combined sample. Then compute Ri = the sum of the ranks for group i. Then the Kruskal Wallis test statistic is:



This statistic approximates a chi-square distribution with k-1 degrees of freedom if the null hypothesis of equal populations is true. Each of the ni should be at least 5 for the approximation to be valid.



More formally,

H0:
HA:
for at least one set of i and j.
Test Statistic:

Significance Level: , typically set to 0.05. Critical Region: H > CHIPPF( ,k-1) where CHIPPF is the chi-square percent point function. Conclusion: Reject the null hypothesis if the test statistic is in the critical region.
And1  初上贼船  2006-1-22 16:36:21 | 显示全部楼层 来自: 荷兰

回复: 请教统计问题...

请问楼上怎么在这里打出公式的?谢谢
ryanwang7777  海贼王  2006-1-22 19:33:55 | 显示全部楼层 来自: 荷兰

回复: 请教统计问题...

从其它文档里粘过来不就行了啊!
if98  中级海盗  2006-1-22 22:10:48 | 显示全部楼层 来自: 荷兰

回复: 请教统计问题...

Post by ryanwang7777
从其它文档里粘过来不就行了啊!

like this?


I think SAS could be helpful
use this link. Here're the comparisons between different tests under different softwares

http://www.ats.ucla.edu/stat/mult_pk...at/default.htm


The Kruskal Wallis test can be applied in the one factor ANOVA case. It is a non-parametric test for the situation where the ANOVA normality assumptions may not apply.
Let ni (i = 1, 2, ..., k) represent the sample sizes for each of the k groups (i.e., samples) in the data. Next, rank the combined sample. Then compute Ri = the sum of the ranks for group i. Then the Kruskal Wallis test statistic is:



This statistic approximates a chi-square distribution with k-1 degrees of freedom if the null hypothesis of equal populations is true. Each of the ni should be at least 5 for the approximation to be valid.



More formally,

H0:
HA:
for at least one set of i and j.
Test Statistic:

Significance Level: , typically set to 0.05. Critical Region: H > CHIPPF( ,k-1) where CHIPPF is the chi-square percent point function. Conclusion: Reject the null hypothesis if the test statistic is in the critical region.
您需要登录后才可以回帖 登录 | 注册

本版积分规则

快速回复 返回顶部 返回列表

关于此网站上的Cookie

我们使用 Cookie 来个性化和改善您在我们网站上的使用体验,了解您如何使用本网站和为您提供量身定制的广告或咨询。 如果您继续使用我们的网站,即代表您同意我们使用 Cookie政策。 请访问我们Cookie条款隐私条款,了解最新内容。

接受